基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习技术逐渐成为解决图像检索和图像分类问题的主流技术,然而现有算法不能有效地处理遥感图像中的复杂空间关系以及多尺度特征问题.为有效解决遥感图像检索问题,提出了一种综合考虑空间关系与尺度特征的新方法.首先,用深度学习方法检测过的遥感图像抽象为点集;其次,构造Delaunay三角网以描述全局空间关系特征;最后,在空间特征相同的部分中使用模糊性状模型匹配局部空间特征.该模型有效地规避了因尺度不同而产生的视觉差异.在UC Merced Land-Use和RS19等公开数据集上进行实验,结果表明,该算法在多尺度遥感图像检索精度方面的表现优于其他相关方法.
推荐文章
一种多尺度平衡深度哈希图像检索方法
多尺度
平衡性
深度哈希
卷积神经网络
图像检索
基于深度学习的大规模人脸图像检索
人脸检索
卷积神经网络
深度学习
由粗到细
基于多尺度特征融合模型的遥感图像建筑物分割
遥感图像
建筑物分割
深度神经网络
膨胀卷积
多尺度特征融合
基于深度学习的图像检索研究
图像检索
深度学习
卷积神经网络
Caffe
主成分分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习和复杂空间关系特征的多尺度遥感图像检索
来源期刊 东北师大学报(自然科学版) 学科 工学
关键词 遥感图像 空间关系 多尺度 模糊形状模型
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 54-62
页数 9页 分类号 TP391.4
字数 5655字 语种 中文
DOI 10.16163/j.cnki.22-1123/n.2018.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王生生 吉林大学计算机科学与技术学院 63 623 11.0 23.0
2 张宇婷 吉林大学计算机科学与技术学院 7 30 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像
空间关系
多尺度
模糊形状模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北师大学报(自然科学版)
季刊
1000-1832
22-1123/N
大16开
长春市人民大街5268号
12-43
1951
chi
出版文献量(篇)
2302
总下载数(次)
5
论文1v1指导