基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了高效、准确地获取视频中的人体行为和运动信息,提出一种基于人体姿态的时空特征的行为识别方法.首先在获取视频中各帧图像的人体关节位置的基础上,提取关节信息描述姿态变化,具体包括在空间维度上提取每帧图像的关节位置关系、时间维度上计算关节空间关系的变化,二者共同构成姿态时空特征描述子;然后利用Fisher向量模型对不同类型的特征描述子分别进行编码,得到固定维度的Fisher向量;最后对不同类型的Fisher向量加权融合后进行分类.实验结果表明,该方法能够有效地识别视频中的人体复杂动作行为,提高行为识别率.
推荐文章
基于改进稠密轨迹与Fisher向量编码的人体行为识别方法
改进稠密轨
Fisher向量编码
人体行为识别
特征提取
量化
稠密光流
基于时空兴趣点的人体行为识别
行为识别
特征提取
时空兴趣点
隐马尔可夫模型
平均 Hausdorff 距离
基于时空图像分割和交互区域检测的人体动作识别方法
人体动作识别
时空图像分割
交互区域
局部约束线性编码
支持向量机
基于卷积神经网络的人体行为识别方法
深度残差网络
BN-Inception网络
空间时间网络
光流
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于姿态时空特征的人体行为识别方法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 行为识别 姿态时空特征 Fisher向量 加权融合
年,卷(期) 2018,(9) 所属期刊栏目 图像与视觉
研究方向 页码范围 1615-1624
页数 10页 分类号 TP391.41
字数 6918字 语种 中文
DOI 10.3724/SP.J.1089.2018.16848
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭晓东 中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室 16 108 8.0 10.0
2 郑潇 中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室 1 9 1.0 1.0
3 王嘉璇 中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (86)
参考文献  (5)
节点文献
引证文献  (9)
同被引文献  (33)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(3)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行为识别
姿态时空特征
Fisher向量
加权融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导