原文服务方: 计算机应用研究       
摘要:
针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法.首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类.在MSRDailyActivity3D和SYSU 3 D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显的提升,验证了其有效性和鲁棒性.该方法较好地解决了动作分类容易发生混淆的问题.
推荐文章
基于角度序列特征的人体动作识别方法
动作识别
Kinect传感器
动态时间规整
DTW
角度序列
基于时空图像分割和交互区域检测的人体动作识别方法
人体动作识别
时空图像分割
交互区域
局部约束线性编码
支持向量机
基于改进的深度卷积神经网络的人体动作识别方法
动作识别
批归一化
深度学习
卷积神经网络
基于深度学习的轻量型人体动作识别模型
深度学习
图像处理
卷积神经网络
动作识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的人体动作识别方法
来源期刊 计算机应用研究 学科
关键词 深度信息 人体动作识别 深度学习 空间结构动态深度图 深度卷积神经网络
年,卷(期) 2020,(1) 所属期刊栏目 图形图像技术
研究方向 页码范围 304-307,316
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2018.05.0499
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张良 中国民航大学天津市智能信号与图像处理重点实验室 22 117 6.0 10.0
2 刘婷婷 中国民航大学天津市智能信号与图像处理重点实验室 5 35 3.0 5.0
3 李玉鹏 中国民航大学天津市智能信号与图像处理重点实验室 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (18)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导