作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了基于机器学习的人体动作深度信息识别方法,构建人体动作的三维图像采集模型,建立人体动作三维重建图像的表面结构重构模型.结合模糊度特征提取方法对人体动作三维重建图像进行多尺度分解,采用三维空间结构重组的方法进行细节特征识别,建立图像的多维分割模型.采用机器学习算法进行细节特征分类识别,建立人体动作深度信息的提取和分类模型,在机器算法下实现人体动作的深度信息检测和多维识别.仿真结果表明,该方法准确度较高,特征分辨力较好,具有很好的人体动作信息检测和辨识能力.
推荐文章
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
基于角度序列特征的人体动作识别方法
动作识别
Kinect传感器
动态时间规整
DTW
角度序列
关节点时空信息融合降维的人体动作识别方法
卷积神经网络
高分辨率网络
人体动作识别
KTH数据集
基于时空图像分割和交互区域检测的人体动作识别方法
人体动作识别
时空图像分割
交互区域
局部约束线性编码
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的人体动作深度信息识别方法研究
来源期刊 长春大学学报(自然科学版) 学科 工学
关键词 机器学习 人体动作 深度信息识别 检测
年,卷(期) 2020,(2) 所属期刊栏目 计算机工程
研究方向 页码范围 16-20
页数 5页 分类号 TP391
字数 3281字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙桂煌 福州理工学院工学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (26)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(14)
  • 参考文献(0)
  • 二级参考文献(14)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
人体动作
深度信息识别
检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
长春大学学报(自然科学版)
双月刊
chi
出版文献量(篇)
4302
总下载数(次)
4
总被引数(次)
15405
论文1v1指导