钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机应用研究期刊
\
基于深度学习的轻量型人体动作识别模型
基于深度学习的轻量型人体动作识别模型
作者:
何冰倩
张斌
魏维
原文服务方:
计算机应用研究
深度学习
图像处理
卷积神经网络
动作识别
摘要:
针对现有基于深度学习的人体动作识别模型参数量大、网络过深过重等问题,提出了一种轻量型的双流融合深度神经网络模型并将该模型应用于人体动作识别.该模型将浅层多尺度网络和深度网络相结合,实现了模型参数量的大幅减少,避免了网络过深的问题.在数据集UCF101和HMDB51上进行实验,该模型在ImageNet预训练模式下分别取得了94.0%和69.4%的识别准确率.实验表明,相较于现有大多基于深度学习的人体动作识别模型,该模型大幅减少了参数量,并且仍具有较高的动作识别准确率.
下载原文
收藏
引用
分享
推荐文章
基于深度学习的人体动作识别方法
深度信息
人体动作识别
深度学习
空间结构动态深度图
深度卷积神经网络
基于改进的深度神经网络的人体动作识别模型
动作识别
深度学习
时空金字塔
注意力机制
卷积神经网络
深度学习在视频动作识别中的应用
动作识别
非局域模块
时间段网络
基于深度学习的人体动作草图到三维骨骼模型重建方法的研究
深度学习
卷积神经网络
三维重建
图像分类
草图建模技术
内容分析
文献信息
版权信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于深度学习的轻量型人体动作识别模型
来源期刊
计算机应用研究
学科
关键词
深度学习
图像处理
卷积神经网络
动作识别
年,卷(期)
2020,(8)
所属期刊栏目
图形图像技术
研究方向
页码范围
2547-2551
页数
5页
分类号
TP391.41
字数
语种
中文
DOI
10.19734/j.issn.1001-3695.2019.02.0094
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
魏维
28
84
5.0
8.0
2
何冰倩
7
15
2.0
3.0
3
张斌
10
8
2.0
2.0
传播情况
被引次数趋势
(/次)
(/年)
版权信息
全文
全文.pdf
引文网络
引文网络
二级参考文献
(53)
共引文献
(84)
参考文献
(9)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1973(1)
参考文献(0)
二级参考文献(1)
1989(1)
参考文献(0)
二级参考文献(1)
1997(1)
参考文献(0)
二级参考文献(1)
1998(2)
参考文献(1)
二级参考文献(1)
2000(1)
参考文献(0)
二级参考文献(1)
2001(2)
参考文献(0)
二级参考文献(2)
2004(2)
参考文献(0)
二级参考文献(2)
2005(2)
参考文献(0)
二级参考文献(2)
2006(1)
参考文献(0)
二级参考文献(1)
2007(1)
参考文献(0)
二级参考文献(1)
2008(2)
参考文献(0)
二级参考文献(2)
2009(1)
参考文献(0)
二级参考文献(1)
2011(6)
参考文献(0)
二级参考文献(6)
2012(5)
参考文献(0)
二级参考文献(5)
2013(14)
参考文献(2)
二级参考文献(12)
2014(6)
参考文献(0)
二级参考文献(6)
2015(3)
参考文献(1)
二级参考文献(2)
2016(6)
参考文献(1)
二级参考文献(5)
2017(2)
参考文献(1)
二级参考文献(1)
2018(2)
参考文献(2)
二级参考文献(0)
2019(1)
参考文献(1)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
深度学习
图像处理
卷积神经网络
动作识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
主办单位:
四川省计算机研究院
出版周期:
月刊
ISSN:
1001-3695
CN:
51-1196/TP
开本:
大16开
出版地:
邮发代号:
创刊时间:
1984-01-01
语种:
chi
出版文献量(篇)
21004
总下载数(次)
0
期刊文献
相关文献
1.
基于深度学习的人体动作识别方法
2.
基于改进的深度神经网络的人体动作识别模型
3.
深度学习在视频动作识别中的应用
4.
基于深度学习的人体动作草图到三维骨骼模型重建方法的研究
5.
基于场景理解的人体动作识别模型
6.
基于视频的人体动作识别算法综述
7.
基于改进的深度卷积神经网络的人体动作识别方法
8.
投影深度向量分解融合 PEMS 的视角不变人体动作识别
9.
基于关节信息和极限学习机的人体动作识别
10.
基于混合特征的人体动作识别改进算法
11.
基于能量模型的LS-TSVM在人体动作识别中的应用
12.
面向人体行为识别的深度特征学习方法比较
13.
基于机器学习的人体动作深度信息识别方法研究
14.
基于深度学习的人体动作识别方法
15.
基于深度学习的视频中人体动作识别进展综述
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机应用研究2000
计算机应用研究2001
计算机应用研究2002
计算机应用研究2003
计算机应用研究2004
计算机应用研究2005
计算机应用研究2006
计算机应用研究2007
计算机应用研究2008
计算机应用研究2009
计算机应用研究2010
计算机应用研究2011
计算机应用研究2012
计算机应用研究2013
计算机应用研究2014
计算机应用研究2015
计算机应用研究2016
计算机应用研究2017
计算机应用研究2018
计算机应用研究2019
计算机应用研究2020
计算机应用研究2022
计算机应用研究2020年第2期
计算机应用研究2020年第6期
计算机应用研究2020年第5期
计算机应用研究2020年第3期
计算机应用研究2020年第4期
计算机应用研究2020年第1期
计算机应用研究2020年第7期
计算机应用研究2020年第8期
计算机应用研究2020年第9期
计算机应用研究2020年第11期
计算机应用研究2020年第10期
计算机应用研究2020年第12期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号