基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
首先,利用核光滑方法研究左截断右删失数据下总体分位数差的估计,得到了左截断右删失数据下分位数差的光滑估计及估计量的大样本性质.其次,在均方误差意义下,证明了光滑分位数差估计比左截断右删失数据下乘积限分位函数的差有更高的估计效率.最后数值模拟分析高斯核函数下选择不同窗宽对改善乘积限分位数差估计效率的影响.
推荐文章
基于左截断右删失数据的Lomax分布形状参数估计
左截断右删失数据
Lomax分布
EM算法
随机模拟
左截断右删失数据下线性模型的加权复合分位数估计及变量选择
左截断右删失数据,惩罚加权复合分位数,自适应
Lasso,变量选择,正态性,Oracle性质
区间删失数据下参数估计的比较
I型区间删失
指数分布
Bayes估计
矩估计
右删失左截断数据下离散威布尔分布的参数估计
极大似然估计
牛顿迭代方法
EM算法
缺损信息原则
渐近置信区间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 左截断右删失数据下分位数差的估计
来源期刊 吉林大学学报(理学版) 学科 数学
关键词 左截断右删失数据 光滑分位函数 乘积限分位函数 分位数差
年,卷(期) 2018,(5) 所属期刊栏目 数学
研究方向 页码范围 1105-1112
页数 8页 分类号 O212.7
字数 4554字 语种 中文
DOI 10.13413/j.cnki.jdxblxb.2018.05.12
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 荀立 长春工业大学数学与统计学院 5 4 1.0 2.0
2 崔世崇 长春工业大学数学与统计学院 2 0 0.0 0.0
3 朵兰 长春工业大学数学与统计学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (2)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(3)
  • 参考文献(1)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
左截断右删失数据
光滑分位函数
乘积限分位函数
分位数差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(理学版)
双月刊
1671-5489
22-1340/O
大16开
长春市南湖大路5372号
12-19
1955
chi
出版文献量(篇)
4812
总下载数(次)
6
总被引数(次)
24333
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导