基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
ICP算法广泛应用于医学图像配准,但存在浮动点集初始平移矩阵和旋转矩阵对ICP的影响较大,图像配准容易造成目标函数陷入局部最优值且计算量大等问题.论文提出了基于改进K-Means聚类医学图像配准算法,该方法通过计算出参考图像和浮动图像的质心,获得配准平移初始值;对医学图像坐标进行中心化处理,通过改进的K-Means聚类方法把图像坐标聚成2类;把这2个聚类中心拟合成一条直线,求得该条直线的斜率,进而求得相关倾斜角,获得配准旋转初始值;使用BSGO自动选择特征点,得到参考点集和浮动点集.通过实验得出该算法既可用于单模态图像配准,也可用于多模态图像配准;具有运算量少、图像配准速度较快、计算比较简单、精确度较高等特点,并且解决了图像配准容易陷入局部最优的问题.
推荐文章
基于改进FCM聚类医学图像配准
图像配准
fuzzy C-means聚类
迭代最近点
互信息
基于改进BA算法的K-means聚类
蝙蝠算法
莱维飞行
惯性权重
limit阈值
K-means算法
基于K-means聚类算法的图像分割方法比较及改进
图像分割
RGB颜色空间
YUV颜色空间
K-均值聚类
二维信息熵
基于Kd树改进的高效K-means聚类算法
k-means算法
簇心
kd树
剪枝策略
CK-means算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进K-Means聚类医学图像配准
来源期刊 软件 学科 工学
关键词 图像配准 K-Means聚类 质心 迭代最近点
年,卷(期) 2018,(1) 所属期刊栏目 基金项目论文
研究方向 页码范围 75-82
页数 8页 分类号 TP391
字数 4377字 语种 中文
DOI 10.3969/j.issn.1003-6970.2018.01.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘军华 湖南邮电职业技术学院互联网工程系 25 58 5.0 6.0
2 陈园 湖南邮电职业技术学院互联网工程系 24 21 3.0 4.0
3 雷超阳 湖南邮电职业技术学院互联网工程系 14 16 2.0 3.0
4 侯赞 6 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (7)
同被引文献  (31)
二级引证文献  (10)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(9)
  • 引证文献(2)
  • 二级引证文献(7)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
图像配准
K-Means聚类
质心
迭代最近点
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件
月刊
1003-6970
12-1151/TP
16开
北京市3108信箱
1979
chi
出版文献量(篇)
9374
总下载数(次)
40
总被引数(次)
23629
论文1v1指导