基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Compressed sensing (CS) has achieved great success in single noise removal.However,it cannot restore the images contaminated with mixed noise efficiently.This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal,in which nonlocal similarity explores the signal sparsity from similar patches,and cosparsity assumes that the signal is sparse after a possibly redundant transform.Meanwhile,an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance.Finally,IRLSM and RACoSaMP are adopted to solve the objective function.Experimental results demonstrate that the proposed method is superior to conventional CS methods,like K-SVD and state-of-art method nonlocally centralized sparse representation (NCSR),in terms of both visual results and quantitative measures.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal
来源期刊 光电子快报(英文版) 学科
关键词
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 57-60
页数 4页 分类号
字数 语种 英文
DOI 10.1007/s11801-018-7202-2
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
光电子快报(英文版)
双月刊
1673-1905
12-1370/TN
16开
天津市南开区红旗南路263号
2005
eng
出版文献量(篇)
1956
总下载数(次)
0
论文1v1指导