基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Document processing in natural language includes retrieval,sentiment analysis,theme extraction,etc.Classical methods for handling these tasks are based on models of probability,semantics and networks for machine learning.The probability model is loss of semantic information in essential,and it influences the processing accuracy.Machine learning approaches include supervised,unsupervised,and semi-supervised approaches,labeled corpora is necessary for semantics model and supervised learning.The method for achieving a reliably labeled corpus is done manually,it is costly and time-consuming because people have to read each document and annotate the label of each document.Recently,the continuous CBOW model is efficient for learning high-quality distributed vector representations,and it can capture a large number of precise syntactic and semantic word relationships,this model can be easily extended to learn paragraph vector,but it is not precise.Towards these problems,this paper is devoted to developing a new model for learning paragraph vector,we combine the CBOW model and CNNs to establish a new deep learning model.Experimental results show that paragraph vector generated by the new model is better than the paragraph vector generated by CBOW model in semantic relativeness and accuracy.
推荐文章
Vector模式软硬件协同仿真验证方法研究
软硬件协同仿真
Vector模式
开放式分层结构
基于i-vector说话人识别算法中训练时长研究
说话人识别
i-vector
Kaldi
训练时长
基于Vector总线设备的CAN总线测试方法概述
CAN
测试
Vector总线测试设备
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Paragraph Vector Representation Based on Word to Vector and CNN Learning
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 DISTRIBUTED WORD VECTOR DISTRIBUTED PARAGRAPH VECTOR CNNS CBOW deep learning.
年,卷(期) 2018,(5) 所属期刊栏目
研究方向 页码范围 213-227
页数 15页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DISTRIBUTED
WORD
VECTOR
DISTRIBUTED
PARAGRAPH
VECTOR
CNNS
CBOW
deep
learning.
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导