作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
使用传统的神经网络的短文本分类算法对其进行情感分类易出现定位误差等问题.为了解决对短文本情感分类时存在的定位误差,本文通过将词向量模型(Word2vec)、双向长短时记忆网络模型(BiLSTM)以及卷积神经网络(CNN)按照一定的框架进行组合,提出了Word2vec-CNN-BiLSTM的短文本情感分类模型.Word2vec-CNN-BiLSTM模型采用对预处理后的文本进行向量化表示来提取文章特征向量,并在神经网络层进行双向语义捕捉实现文本的情感分类.实验结果显示Word2vec-CNN-BiLSTM的短文本情感分类模型有效解决了对短文本分类出现的情感分类定位误差问题.
推荐文章
基于word2vec和双向LSTM的情感分类深度模型
文本分类
情感分析
双向长短时记忆循环神经网络
词向量
社交网络
基于Focal Loss-2函数的中文短文本情感分类研究
情感分类
不平衡数据集
卷积神经网络
长短期记忆人工神经网络
FocalLoss-2
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
基于复杂句式短文本情感分类研究
文本信息处理
情感分析
复杂句式
word2vec
情感分类模型
SVM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Word2vec-CNN-Bilstm短文本情感分类
来源期刊 福建电脑 学科 工学
关键词 神经网络 情感分类 词向量 短文本
年,卷(期) 2020,(1) 所属期刊栏目 论著
研究方向 页码范围 11-16
页数 6页 分类号 TP181|TP391.1
字数 4563字 语种 中文
DOI 10.16707/j.cnki.fjpc.2020.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王立荣 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (76)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(16)
  • 参考文献(1)
  • 二级参考文献(15)
2018(11)
  • 参考文献(4)
  • 二级参考文献(7)
2019(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
情感分类
词向量
短文本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建电脑
月刊
1673-2782
35-1115/TP
大16开
福州市华林邮局29号信箱
1985
chi
出版文献量(篇)
21147
总下载数(次)
86
总被引数(次)
44699
论文1v1指导