基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
遥感图像是一种特征维度很高的图像,当前的遥感图像检索技术图像特征表达能力不强,并且利用海明距离排序后还需计算欧式距离,产生信息损失,严重制约了遥感图像检索技术的性能.基于上述问题,提出一种基于卷积神经网络和E2LSH的遥感图像检索技术,将遥感图像进行降噪处理之后,利用已经预训练过的VGG-Net-D卷积神经网络模型提取图像深层次的特征,挖掘隐含的图像信息;利用L个E2LSH(Exact Euclidean Locality-Sensitive Hashing)函数对提取的特征在保证度量距离的同时进行高效降维并构建L个索引结构;利用L个索引完成粗检索以构成候选集.直接计算并排序候选集的欧氏距离来完成近似最近邻搜索,避免了两种空间及距离的换算.实验结果表明,提出的检索方法减少了距离换算的信息损失并能有效提高遥感图像特征表达能力,使其在查准率和查全率上有更好的检索效果.
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于全卷积神经网络的遥感图像海面目标检测
YOLOv3
全卷积神经网络
遥感图像
目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络和E2LSH的遥感图像检索研究
来源期刊 计算机应用与软件 学科 工学
关键词 遥感图像检索 卷积神经网络 E2LSH 欧氏距离 近似近邻搜索
年,卷(期) 2018,(7) 所属期刊栏目 图像处理与应用
研究方向 页码范围 250-255
页数 6页 分类号 TP3
字数 5110字 语种 中文
DOI 10.3969/j.issn.1000-386x.2018.07.045
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 訾玲玲 辽宁工程技术大学电子与信息工程学院 43 76 5.0 6.0
2 彭晏飞 辽宁工程技术大学电子与信息工程学院 45 178 8.0 11.0
3 陶进 辽宁工程技术大学电子与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (85)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (1)
二级引证文献  (5)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
遥感图像检索
卷积神经网络
E2LSH
欧氏距离
近似近邻搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导