基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 MRI正逐步代替CT进行骨头与关节的检查,肩关节MRI中骨结构的精确自动分割对于骨损伤和疾病的度量与诊断至关重要,现有骨头分割算法无法做到不用任何先验知识进行自动分割,且通用性和精准度相对较低,为此提出一种基于图像块和全卷积神经网络(PCNN和FCN)相结合的自动分割算法.方法 首先建立4个分割模型,包括3个基于U-Net的骨头分割模型(肱骨分割模型、关节骨分割模型、肱骨头和关节骨作为整体的分割模型)和一个基于块的AlexNet分割模型;然后使用4个分割模型来获取候选的骨头区域,并通过投票的方式准确检测到肱骨和关节骨的位置区域;最后在检测到的骨头区域内进一步使用AlexNet分割模型,从而分割出精确度在像素级别的骨头边缘.结果 实验数据来自美国哈佛医学院/麻省总医院骨科的8组病人,每组扫描序列包括100片左右图像,都已经分割标注.5组病人用于训练和进行五倍的交叉验证,3组病人用于测试实际的分割效果,其中Dice Coefficient、Positive Predicted Value(PPV)和Sensitivity平均准确率分别达到0.92±0.02、0.96±0.03和0.94±0.02.结论 本文方法针对小样本的病人数据集,仅通过2维医学图像上的深度学习,可以得到非常精确的肩关节分割结果.所提算法已经集成到我们开发的医学图像度量分析平台“3DQI”,通过该平台可以展示肩关节骨头3D分割效果,给骨科医生提供临床的诊断指导作用.同时,所提算法框架具有一定的通用性,适应于小样本数据下CT和MRI中特定器官和组织的精确分割.
推荐文章
基于卷积神经网络改进的图像自动分割方法
图像分割
卷积神经网络
多尺度特征融合
残差连接
三维重建
基于滑动块的深度卷积神经网络乳腺X线摄影图像肿块分割算法
乳腺X线摄影图像
乳腺肿块
滑动块
深度卷积神经网络
图像分割
深度卷积神经网络在放射治疗计划图像分割中的应用
深度学习
卷积神经网络
医学影像分割
相似度系数
放射治疗
基于3D卷积神经网络的脑肿瘤医学图像分割优化
脑肿瘤
医学图像分割
多模态MRI
差异信息提取
多尺度采样
3D卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用图像块和全卷积神经网络的肩关节MRI自动分割
来源期刊 中国图象图形学报 学科 工学
关键词 深度学习 医学图像分割 全卷积网络 核磁共振图像 骨科诊断
年,卷(期) 2018,(10) 所属期刊栏目 医学图像处理
研究方向 页码范围 1558-1570
页数 13页 分类号 TP391
字数 5776字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 洪国斌 中山大学附属第五医院医学影像部 73 430 12.0 16.0
2 金冉 浙江万里学院电子与计算机学院 28 68 5.0 7.0
3 王仁芳 浙江万里学院电子与计算机学院 33 135 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (60)
二级引证文献  (4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(6)
  • 引证文献(5)
  • 二级引证文献(1)
2020(6)
  • 引证文献(3)
  • 二级引证文献(3)
研究主题发展历程
节点文献
深度学习
医学图像分割
全卷积网络
核磁共振图像
骨科诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导