基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前我国空气污染形势日益严峻,空气质量的急剧下降致使人们的身体健康受到严重地危害,同时也妨碍了社会和经济的可持续发展.对PM2.5浓度进行预测,从而监督空气污染状况,防止严重污染的发生受到我国及世界各国人民的广泛关注.因此提出有效的模型对PM2.5浓度进行准确预测成为时下一个重要问题.本文提出了PLS-M5P (Partial Least Square-M5P)模型用于PM2.5浓度预测.实验结果表明,在空气质量预测方面,与传统的预测模型如BP神经模型相比,PLS-M5P模型树有以下几个优势:(1)能提供直观的数学方程,并能够从获得的数学方程中更深入地理解预测结果.(2)使用PLS-M5P模型生成的树状图可以显示因素的重要性,并且树状图的建立能使决策者更清晰地认识预测过程.(3)建模和预测所用时间很短,而且总是收敛的.(4)预测的精度更高.
推荐文章
基于LSTM的PM2.5浓度预测模型
PM2.5
LSTM循环神经网络
时序特征
基于广义隐马尔可夫模型的PM2.5浓度预测
系统工程
环境
污染
PM2.5
预测
算法
广义隐马尔可夫模型
基于BP人工神经网络的鹰潭市PM2.5和PM10浓度预测模型
大气颗粒物
预测模型
BP人工神经网络
气象要素
气体污染物
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PLS-M5P模型的PM2.5浓度预测
来源期刊 计算机与应用化学 学科 化学
关键词 PM2.5浓度预测 决策树 BP神经网络 PCA-M5P模型 PLS-M5P模型
年,卷(期) 2018,(12) 所属期刊栏目
研究方向 页码范围 959-970
页数 12页 分类号 TQ015.9|TP391.9|O6-39
字数 语种 中文
DOI 10.16866/j.com.app.chem201812001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (4)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PM2.5浓度预测
决策树
BP神经网络
PCA-M5P模型
PLS-M5P模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
论文1v1指导