基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear in the big data environment.Firstly,to shorten the respond time of the DDoS attack detector;secondly,to reduce the required compute resources;lastly,to achieve a high detection rate with low false alarm rate.In the paper,we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems.We define a network flow abnormal index as PDRA with the percentage of old IP addresses,the increment of the new IP addresses,the ratio of new IP addresses to the old IP addresses and average accessing rate of each new IP address.We design an IP address database using sequential storage model which has a constant time complexity.The autoregressive integrated moving average(ARIMA)trending prediction module will be started if and only if the number of continuous PDRA sequence value,which all exceed an PDRA abnormal threshold(PAT),reaches a certain preset threshold.And then calculate the probability that is the percentage of forecasting PDRA sequence value which exceed the PAT.Finally we identify the DDoS attack based on the abnormal probability of the forecasting PDRA sequence.Both theorem and experiment show that the method we proposed can effectively reduce the compute resources consumption,identify DDoS attack at its initial stage with higher detection rate and lower false alarm rate.
推荐文章
基于流量分析的App-DDoS攻击检测
应用层分布式拒绝服务攻击
DFM-FA
卡尔曼滤波
信息熵
基于GAIG特征选择算法的轻量化DDoS攻击检测方法
分布式拒绝服务攻击
轻量级入侵检测
特征选择
分类器
The metallogenic environment of the Dounan manganese deposit, Southeast Yunnan, China: evidence from
Dounan manganese deposit
Metallogenetic environment
Mössbauer spectroscopy
Geochemistry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Abnormal Network Flow Feature Sequence Prediction Approach for DDoS Attacks Detection in Big Data Environment
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 DDOS ATTACK time series prediction ARIMA BIG data
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 95-119
页数 25页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DDOS
ATTACK
time
series
prediction
ARIMA
BIG
data
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导