基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
环境质量与人们的健康息息相关,一直是研究的热点。本文选取长沙市2017年NO2、PM10等大气数据对PM2.5日均值进行预测,采用BIC准则进行特征选择。在传统的超限学习机(ELM)的基础上,引入正则化项以控制模型的复杂度,并用遗传算法(GA)对模型的输入层权重矩阵和隐含层阈值矩阵进行优化,建立遗传算法和正则化极限学习机(GA-RE-ELM)的PM2.5预测模型。实验表明,该模型相比BP神经网络、超限学习机有更好的精度,均方误差分别降低了35.09%、25.49%,平均绝对误差分别降低了40.86%、30.80%,平均绝对百分误差分别降低了45.49%、31.65%,为PM2.5浓度的预测提供一种新的方法。
推荐文章
基于LSTM的PM2.5浓度预测模型
PM2.5
LSTM循环神经网络
时序特征
基于BP人工神经网络的鹰潭市PM2.5和PM10浓度预测模型
大气颗粒物
预测模型
BP人工神经网络
气象要素
气体污染物
基于广义隐马尔可夫模型的PM2.5浓度预测
系统工程
环境
污染
PM2.5
预测
算法
广义隐马尔可夫模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法和正则化极限学习机的PM2.5浓度预测研究
来源期刊 计算机科学与应用 学科 工学
关键词 遗传算法 正则化极限学习机 PM2.5浓度预测
年,卷(期) 2018,(8) 所属期刊栏目
研究方向 页码范围 1207-1216
页数 10页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传算法
正则化极限学习机
PM2.5浓度预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与应用
月刊
2161-8801
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1319
总下载数(次)
15
论文1v1指导