原文服务方: 计算机测量与控制       
摘要:
污水处理存在着强非线性和非稳态运行等特征,对其运行过程进行在线故障诊断在减少污染和保障生产过程安全方面具有重大意义;针对污水处理过程运行状态的不平衡分布造成故障诊断准确率下降的问题,提出一种基于极限学习机(ELM)和AdaBoost.M2算法的在线故障诊断方法;该模型以ELM为弱分类器,利用AdaBoost.M2将多个弱分类器集成,实现了强分类器;仿真结果表明,该模型在线故障诊断精度高,学习速度快,泛化性能好,相较于传统故障诊断方法,综合性能较为突出,较好地实现了污水处理的在线故障诊断.
推荐文章
基于核函数的加权极限学习机污水处理在线故障诊断
加权极限学习机
核函数
在线建模
污水处理
故障诊断
仿真实验
基于不平衡学习的集成极限学习机污水处理故障诊断
加权极限学习机
AdaBoost集成算法
不平衡学习
污水处理
故障诊断
模型
污水处理设备的故障诊断与远程维护系统研究
污水处理
远程维护
故障诊断
Java
云平台
模糊粗糙集在污水处理过程中的应用
污水处理
故障诊断
特征选择
模糊粗糙集
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ELM-AdaBoost.M2的污水处理过程在线故障诊断
来源期刊 计算机测量与控制 学科
关键词 污水处理 故障诊断 极限学习机 AdaBoost.M2 在线建模
年,卷(期) 2018,(2) 所属期刊栏目 测试与故障诊断
研究方向 页码范围 53-56
页数 4页 分类号 TP242
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2018.02.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱志成 华南理工大学机械与汽车工程学院 41 512 11.0 22.0
2 谭承诚 华南理工大学机械与汽车工程学院 2 2 1.0 1.0
3 于广平 中国科学院沈阳自动化研究所广州分所 17 141 5.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (76)
共引文献  (177)
参考文献  (8)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
污水处理
故障诊断
极限学习机
AdaBoost.M2
在线建模
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导