基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对复杂优化问题,研究并提出一种基于深度学习的层次结构与Dropout技术的变参数并行玻尔兹曼算法模型.该算法模型能够有效抑制局域最优问题,在TSP问题求解中获得了较好优化效果,并在经典实例eil51搜索到比迄今已知最优解更优的TSP路径,在pr1002等大规模TSP问题求解中较快搜索到迄今已知最优路径.
推荐文章
基于深度玻尔兹曼机的乐器分类问题研究
深度玻尔兹曼机
乐器分类
深度学习
平均场理论
动量项
计算气动声学中的伽辽金玻尔兹曼方法研究
计算气动声学
伽辽金玻尔兹曼方法
无反射边界条件
基于深度玻尔兹曼机的文本特征提取研究
文本特征
多重softmax模型
深度学习
深度玻尔兹曼机
稀疏表示
利用深度玻尔兹曼机与典型相关分析的自动图像标注算法
自动图像标注
深度学习
深度玻尔兹曼机
典型相关分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 变参数深度玻尔兹曼计算模型研究
来源期刊 信息技术与网络安全 学科 工学
关键词 深度学习 玻尔兹曼机 Dropout技术 参数扰动 旅行商问题(TSP)
年,卷(期) 2018,(6) 所属期刊栏目 智能算法
研究方向 页码范围 68-71
页数 4页 分类号 TP18
字数 2387字 语种 中文
DOI 10.19358/j.issn.2096-5133.2018.06.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈贤富 中国科学技术大学信息科学技术学院 30 235 9.0 14.0
2 王娜 中国科学技术大学信息科学技术学院 66 459 12.0 19.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (294)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(1)
  • 二级参考文献(0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
玻尔兹曼机
Dropout技术
参数扰动
旅行商问题(TSP)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导