基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
查询扩展是信息检索领域重要研究内容.为了解决信息检索过程中用户提交查询时描述不准确以及查询词不匹配的问题,提出一种基于Word2vec的语义查询扩展方法.使用分布式神经语言概率模型Word2vec训练低维词向量,选取扩展词候选集,利用面向扩展词的查询向量生成方法过滤候选集,使选取的扩展词能更有效地体现整个查询的语义及语法相关性.实验结果表明基于Word2vec的语义查询扩展方法使查全率及查准率均有提高,因此该方法能很好地应用于查询扩展领域.
推荐文章
基于word2vec和双向LSTM的情感分类深度模型
文本分类
情感分析
双向长短时记忆循环神经网络
词向量
社交网络
基于LDA和word2vec的英文作文跑题检测
作文跑题检测
向量空间模型
潜在狄利克雷分配
词语间语义关系
基于word2vec的跨领域情感分类方法
语义特征
共现特征
词向量
跨领域情感分类
基于word2vec的数字图书馆本体构建技术研究
本体构建
领域本体
概念抽取
关系抽取
数字图书馆现状
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Word2vec的语义查询扩展方法
来源期刊 软件导刊 学科 工学
关键词 查询扩展 分布式神经语言概率模型 Word2vec 面向扩展词 语义相关性
年,卷(期) 2018,(9) 所属期刊栏目 软件理论与方法
研究方向 页码范围 48-51
页数 4页 分类号 TP301
字数 3383字 语种 中文
DOI 10.11907/rjdk.181044
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕晓伟 昆明理工大学信息工程与自动化学院 3 3 1.0 1.0
2 章露露 昆明理工大学信息工程与自动化学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (161)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1977(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(3)
  • 参考文献(1)
  • 二级参考文献(2)
1990(5)
  • 参考文献(1)
  • 二级参考文献(4)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
查询扩展
分布式神经语言概率模型
Word2vec
面向扩展词
语义相关性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导