基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对影评数据的情感分析,提出基于Word2vec和多分类器的情感分类方法.首先在对评论数据进行预处理的基础上,训练Word2vec模型,将词表示为词向量;其次结合随机森林和朴素贝叶斯多项式模型完成影评数据的情感分类;最后在Kaggle竞赛公开的影评数据集上进行实验.结果表明,Word2vec可有效捕捉词的语义,显著提高情感分类算法的性能.
推荐文章
基于word2vec和双向LSTM的情感分类深度模型
文本分类
情感分析
双向长短时记忆循环神经网络
词向量
社交网络
基于word2vec的跨领域情感分类方法
语义特征
共现特征
词向量
跨领域情感分类
基于LDA和word2vec的英文作文跑题检测
作文跑题检测
向量空间模型
潜在狄利克雷分配
词语间语义关系
基于word2vec和双向LSTM的情感分类深度模型
文本分类
情感分析
双向长短时记忆循环神经网络
词向量
社交网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Word2vec和多分类器的影评情感分类方法
来源期刊 宁夏大学学报(自然科学版) 学科 工学
关键词 Word2vec 情感分类 随机森林 朴素贝叶斯多项式模型
年,卷(期) 2019,(2) 所属期刊栏目 信息学
研究方向 页码范围 141-144
页数 4页 分类号 TP391.1
字数 2964字 语种 中文
DOI 10.3969/j.issn.0253-2328.2019.02.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵华 山东科技大学计算机科学与工程学院 14 21 3.0 4.0
2 王学贺 菏泽医学专科学校计算机教研室 20 55 5.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (194)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(8)
  • 参考文献(2)
  • 二级参考文献(6)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Word2vec
情感分类
随机森林
朴素贝叶斯多项式模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
宁夏大学学报(自然科学版)
季刊
0253-2328
64-1006/N
大16开
银川市西夏区文萃北街217号
74-7
1980
chi
出版文献量(篇)
2266
总下载数(次)
4
总被引数(次)
11395
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导