基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前机车滚动轴承故障诊断效率低、速度慢的问题,设计一种基于小波包与粗糙集神经网络的机车走行部滚动轴承故障诊断方法.首先运用小波包分解构造故障特征集,之后运用粗糙集对故障特征集进行降维处理,消除冗余信息,然后将降维后的最小属性集作为Levenberg-Marquardt算法改进的BP神经网络的输入,建立相应的神经网络模型实现故障诊断.测试结果表明,相较于普通BP网络模型,该方法降低了神经网络模型构建的复杂度,提高了故障诊断速度与故障诊断准确率.
推荐文章
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的机车滚动轴承故障诊断研究
来源期刊 软件导刊 学科 工学
关键词 小波包 粗糙集理论 故障诊断 Levenberg-Marquardt算法 神经网络 机车滚动轴承
年,卷(期) 2018,(9) 所属期刊栏目 应用技术与研究
研究方向 页码范围 153-156,161
页数 5页 分类号 TP319
字数 3872字 语种 中文
DOI 10.11907/rjdk.181025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 费树岷 东南大学自动化学院 367 3210 27.0 37.0
2 童珠满 东南大学自动化学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (154)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1982(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(11)
  • 参考文献(2)
  • 二级参考文献(9)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波包
粗糙集理论
故障诊断
Levenberg-Marquardt算法
神经网络
机车滚动轴承
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导