原文服务方: 计算机应用研究       
摘要:
针对显著性检测中特征选择的主观片面性和预测过程中特征权重的难以协调性问题,提出了一种基于全卷积神经网络和多核学习的监督学习算法.首先通过MSRA10K图像数据库训练出的全卷积神经网络(FCNN),预测待处理图像的初步显著性区域;然后在多尺度上选择置信度高的前景、背景超像素块作为多核支持向量机(SVM)分类器的学习样本集,选择并提取八种典型特征代表对应样本训练SVM;接着通过多核SVM分类器预测各超像素显著值;最后融合初步显著图和多核学习显著图,改善FCNN网络输出图的不足,得到最终的显著性目标.该方法在SOD和DUT-OMRON数据库上有更高的AUC值和F-measure值,综合性能均优于对比方法,验证了该方法在显著性检测中准确性的提高,为目标识别、机器视觉等应用提供更可靠的预处理结果.
推荐文章
基于卷积神经网络和语义相关的协同显著性检测
协同显著性检测
深度学习
卷积神经网络
图像组语义相关类
基于双层多尺度神经网络的显著性对象检测算法
显著性对象检测
深度学习
深度卷积网络
条件随机场
基于结构感知深度神经网络的显著性对象检测算法
显著性对象检测
深度学习
显著图
卷积神经网络
对象骨架检测
基于全卷积神经网络的多目标显著性检测
目标检测
空洞卷积
低级特征
全卷积神经网络
跳跃连接
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全卷积神经网络和多核学习的显著性检测
来源期刊 计算机应用研究 学科
关键词 显著性检测 深度学习 全卷积神经网络 多核学习 监督学习
年,卷(期) 2018,(5) 所属期刊栏目 图形图像技术
研究方向 页码范围 1586-1590
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.05.067
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴谨 武汉科技大学信息科学与工程学院 100 796 14.0 24.0
2 朱磊 武汉科技大学信息科学与工程学院 34 145 6.0 11.0
3 何可 武汉科技大学信息科学与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (104)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1909(1)
  • 参考文献(0)
  • 二级参考文献(1)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著性检测
深度学习
全卷积神经网络
多核学习
监督学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导