基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着图像数据的爆炸性增长,图像处理变得越来越重要.显著性目标检测是图像处理的重要研究方向之一,目前已采用多种研究方法进行显著性目标检测,但是传统的显著性检测方法所使用的低级特征对于复杂场景并不健壮.全卷积神经网络在图像处理中表现出良好的性能,但存在目标显著性检测边界模糊等不足.为解决边界模糊等问题,该模型采用了一种具有跳跃连接的全卷积神经网络,以及5个不同膨胀率的空洞卷积按照一定规则组成的ESP模块,在全卷积神经网络的基础上采用ESP模块和不同的跳跃连接方式,以获取更多的低级特征来精确多目标显著对象的边界.实验中运用MIT Scene Parsing数据集训练和测试模型,通过与相关模型在精度和MIOU上的比较结果表明,在保证模型的处理时间未增加的同时,经过改进的全卷积神经网络的检测具有更高的准确度以及更精确的边界信息.
推荐文章
基于全卷积神经网络和多核学习的显著性检测
显著性检测
深度学习
全卷积神经网络
多核学习
监督学习
基于卷积神经网络和语义相关的协同显著性检测
协同显著性检测
深度学习
卷积神经网络
图像组语义相关类
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于双层多尺度神经网络的显著性对象检测算法
显著性对象检测
深度学习
深度卷积网络
条件随机场
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全卷积神经网络的多目标显著性检测
来源期刊 计算机技术与发展 学科 工学
关键词 目标检测 空洞卷积 低级特征 全卷积神经网络 跳跃连接
年,卷(期) 2020,(8) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 34-39
页数 6页 分类号 TP302.7
字数 5261字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.08.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周炜 青岛理工大学信息与控制工程学院 9 28 4.0 5.0
2 孙霞 青岛理工大学信息与控制工程学院 4 15 2.0 3.0
3 翟正利 青岛理工大学信息与控制工程学院 5 17 3.0 4.0
4 梁振明 青岛理工大学信息与控制工程学院 2 10 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (20)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(10)
  • 参考文献(2)
  • 二级参考文献(8)
2018(12)
  • 参考文献(6)
  • 二级参考文献(6)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
空洞卷积
低级特征
全卷积神经网络
跳跃连接
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导