基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
应对大量受干扰图像的分类问题,提出了一种双并行交叉降噪卷积模型,该模型由两部分并行交叉网络结构组成,分别对应改进的自编码方式和并行交叉卷积神经网络,同时在该模型训练的过程中,使用批量正则化和改进激活函数的方法.经实验验证,与同类模型相比,该模型首先具有降噪能力强、鲁棒性好、泛化能力强和准确率高的特点,其次避免过拟合,加快收敛速度.在图片不同程度受损的情况下,它也可较好地完成图像目标识别分类任务.
推荐文章
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
基于并行残差卷积神经网络的多种树叶分类
树叶分类
卷积神经网络
残差学习
图像特征提取
批量归一化
测试效果对比
并行尺度裁切的深度卷积神经网络模型
并行卷积神经网络
识别
尺度裁切
特征提取
AlexNet
基于卷积神经网络的辐射图像降噪方法研究
辐射图像
图像降噪
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 受损图片分类的双并行交叉降噪卷积神经网络
来源期刊 计算机工程与应用 学科 工学
关键词 图像分类 自编码器 卷积神经网络 双并行交叉
年,卷(期) 2018,(18) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 147-153
页数 7页 分类号 TP183|TP389.1|TP911.73
字数 5553字 语种 中文
DOI 10.3778/j.issn.1002-8331.1802-0090
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周雪峰 广东省智能制造研究所广东省现代控制技术重点实验室 10 32 4.0 5.0
2 王达 沈阳工业大学信息科学与工程学院 1 0 0.0 0.0
6 徐智浩 广东省智能制造研究所广东省现代控制技术重点实验室 2 0 0.0 0.0
7 蔡奕松 广东省智能制造研究所广东省现代控制技术重点实验室 3 5 1.0 2.0
8 陈洲 沈阳工业大学信息科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (629)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(2)
  • 参考文献(1)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(2)
  • 参考文献(0)
  • 二级参考文献(2)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(18)
  • 参考文献(1)
  • 二级参考文献(17)
2016(14)
  • 参考文献(2)
  • 二级参考文献(12)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
自编码器
卷积神经网络
双并行交叉
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导