原文服务方: 现代电子技术       
摘要:
树叶分类识别对于鉴定新的或者稀缺树种至关重要,采用卷积神经网络算法可以实现对树叶图像特征的自动提取,减少繁琐的人工成本,实现使用人工智能的方法来分类树叶.实验采用一种并行残差卷积神经网络和一种加入残差学习的传统Alexnet网络在制作的30种分类树叶的数据集上测试效果并作对比.以上两种方式分别比传统Alexnet网络提高了15.36%和9.36%,而且使网络更轻量化,最高准确率为90.67%,为树种识别研究提供了有效的分类方法.
推荐文章
基于分组残差结构的轻量级卷积神经网络设计
卷积神经网络
分组
残差
分类性能
轻量
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于并行残差卷积神经网络的多种树叶分类
来源期刊 现代电子技术 学科
关键词 树叶分类 卷积神经网络 残差学习 图像特征提取 批量归一化 测试效果对比
年,卷(期) 2020,(9) 所属期刊栏目 测控与自动化技术
研究方向 页码范围 96-100
页数 5页 分类号 TN711-34|TP391.4
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2020.09.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周悦 广西师范大学电子工程学院 13 16 2.0 3.0
2 魏书伟 广西师范大学电子工程学院 4 0 0.0 0.0
3 曾上游 广西师范大学电子工程学院 20 28 3.0 4.0
4 王新娇 广西师范大学电子工程学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (13)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
树叶分类
卷积神经网络
残差学习
图像特征提取
批量归一化
测试效果对比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导