基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
情感多分类标注对文本信息的敏感性远高于二分类问题.为了有效利用语义依赖距离和语义多层次进行情感多分类,提出一种多窗口多池化层的卷积神经网络模型.首先使用多窗口的卷积层提取上下文局部语义,然后通过多池化层降低特征维度,同时保留不同层次的语义,由多层次语义构成文本特征向量,最后送入全连接层完成多分类标注.采用斯坦福情感树库数据集验证所提模型的多分类标注效果.实验结果表明,在训练集含短语和未包含短语两种设定下,模型的短文本情感多分类正确率分别达到54.6%和43.5%.
推荐文章
基于fcmpCNN模型的网络文本情感多分类标注
情感分析
情感多分类标注
卷积神经网络
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于卷积神经网络模型的互联网短文本情感分类
互联网短文本
情感分类
卷积神经网络
自然语言处理
深度学习
文本卷积神经网络模型在短文本多分类中的应用
卷积神经网络
TextCNN
文本分类
文本挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络在短文本情感多分类标注应用
来源期刊 计算机工程与应用 学科 工学
关键词 情感分析 多分类标注 卷积神经网络 深度学习
年,卷(期) 2018,(22) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 133-138,149
页数 7页 分类号 TP183
字数 6896字 语种 中文
DOI 10.3778/j.issn.1002-8331.1801-0163
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晖 常州大学信息科学与工程学院 12 23 3.0 3.0
2 叶施仁 常州大学信息科学与工程学院 25 214 6.0 14.0
3 周锦峰 常州大学信息科学与工程学院 3 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (679)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (13)
二级引证文献  (1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(13)
  • 参考文献(2)
  • 二级参考文献(11)
2017(7)
  • 参考文献(4)
  • 二级参考文献(3)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
情感分析
多分类标注
卷积神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导