基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统机器学习方法在处理大规模入侵数据的检测精度低和检测速度慢等问题,提出一种基于深度学习的混合入侵检测模型DBN-PBT-TSVM.该模型利用深度信念网络DBN(Deep Belief Network)减少特征集的维度,获得原始数据集的最优的低维表示;综合对支持向量机TSVM(Twin Support Vector Machine)和偏二叉树的优势,构造了一种基于偏二叉树的对支持向量机多类分类器,对网络入侵数据进行识别.基于KDDCUP'99数据集实验比较的结果表明,DBN-PBT-TSVM模型实现了在保证分类性能的同时,还显著地降低了检测时间,尤其是在处理大规模数据时效果更明显,为入侵检测在处理大规模数据时提供了一种全新的思路.
推荐文章
基于TSVM的网络入侵检测研究
入侵检测
统计学习
直推式支持向量机
一种混合入侵检测模型
入侵检测模型
混合方法
K-均值
朴素贝叶斯
反向传播神经网络
基于DBN和SOFTMAX的网络入侵检测模型
网络安全
入侵检测模型
深度置信网络
SOFTMAX
基于RBF和Elman混合神经网络的入侵检测系统的研究
入侵检测系统
异常检测
误用检测
混合神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DBN和TSVM的混合入侵检测模型研究
来源期刊 计算机应用与软件 学科 工学
关键词 深度学习 入侵检测 深度信念网络 偏二叉树 对支持向量机
年,卷(期) 2018,(5) 所属期刊栏目 安全技术
研究方向 页码范围 313-317,333
页数 6页 分类号 TP309
字数 4382字 语种 中文
DOI 10.3969/j.issn.1000-386x.2018.05.056
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张克君 北京电子科技学院计算机科学与技术系 16 61 5.0 7.0
5 鲜敏 西安电子科技大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (50)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
入侵检测
深度信念网络
偏二叉树
对支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导