基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
输电线路稳定运行是保障电力系统安全的重要环节之一,经典的机器学习算法对输电线路部件识别与分类准确率和效率都比较低.针对这一问题,选取了具有识别与分类功能的区域卷积神经网络(Faster-RCNN)来对部件进行识别与分类,研究了不同网络模型在输电线路中对不同部件的识别准确率和识别时间,结合实验结果,根据识别准确率和识别时间的优劣选取最佳网络模型,然后就如何提高模型的识别准确率和缩短识别时间展开研究,提出两种方法:通过调整CNN模型的卷积核大小和图像的旋转变换扩充数据集,实验结果表明两种方法都能有效的提高了输电线路巡检中的部件识别与缺陷检测的有效性和可靠性.利用无人机实际采集的图像进行识别和分类实验,实验结果表明深度学习方法在高压输电线路部件的识别与缺陷检测中的有效性和可靠性都非常高,Faster R-CNN进行部件识别与缺陷检测可以达到每张近0.17s的识别速度,对均压环的识别率最高可达到96.8%,mAP最高可以达到93.72%.
推荐文章
航拍图像在输电线路识别与状态检测中的应用研究
航拍图像
输电线路识别
状态检测
定期检查
基于图像识别的无人机输电线路断股检测系统设计
线路断股检测
边缘检测
霍夫变换
区域种子点
区域生长
山区输电线路在线监测研究
输电线路
故障预测
在线监测
智能化监控
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度学习在输电线路中部件识别与缺陷检测的研究
来源期刊 电子测量技术 学科 工学
关键词 Faster-RCNN 网络模型 深度学习 有效性 可靠性
年,卷(期) 2018,(6) 所属期刊栏目 信息技术及图像处理
研究方向 页码范围 60-65
页数 6页 分类号 TP391.4|TN081
字数 语种 中文
DOI 10.19651/j.cnki.emt.1701266
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (124)
共引文献  (257)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(11)
  • 参考文献(2)
  • 二级参考文献(9)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(20)
  • 参考文献(1)
  • 二级参考文献(19)
2011(17)
  • 参考文献(1)
  • 二级参考文献(16)
2012(14)
  • 参考文献(1)
  • 二级参考文献(13)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(10)
  • 参考文献(3)
  • 二级参考文献(7)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Faster-RCNN
网络模型
深度学习
有效性
可靠性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
总被引数(次)
46785
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导