基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The extreme imbalanced data problem is the core issue in anomaly detection.The amount of abnormal data is so small that we cannot get adequate information to analyze it.The mainstream methods focus on taking fully advantages of the normal data,of which the discrimination method is that the data not belonging to normal data distribution is the anomaly.From the view of data science,we concentrate on the abnormal data and generate artificial abnormal samples by machine learning method.In this kind of technologies,Synthetic Minority Over-sampling Technique and its improved algorithms are representative milestones,which generate synthetic examples randomly in selected line segments.In our work,we break the limitation of line segment and propose an Imbalanced Triangle Synthetic Data method.In theory,our method covers a wider range.In experiment with real world data,our method performs better than the SMOTE and its meliorations.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Imbalanced Triangle Synthetic Data for Machine Learning Anomaly Detection
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 ANOMALY detection imbalanced data SYNTHETIC MACHINE learning
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 15-26
页数 12页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ANOMALY
detection
imbalanced
data
SYNTHETIC
MACHINE
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导