基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The paper is concerned with time-asymptotic behavior of solution near a local Maxwellian with rarefaction wave to a fluid-particle model described by the Vlasov-Fokker-Planck equation coupled with the compressible and inviscid fluid by Euler-Poisson equations through the relaxation drag frictions,Vlasov forces between the macroscopic and microscopic momentums and the electrostatic potential forces.Precisely,based on a new micro-macro decomposition around the local Maxwellian to the kinetic part of the fluid-particle coupled system,which was first developed in[16],we show the time-asymptotically nonlinear stability of rarefaction wave to the one-dimensional compressible inviscid Euler equations coupled with both the Vlasov-Fokker-Planck equation and Poisson equation.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
An experimental study on metal precipitation driven by fluid mixing: implications for genesis of car
Metal precipitation
Fluid mixing
Sulfur species
MVT lead–zinc ore deposits
Carbonate-hosted
lead–zinc deposits
PCI和Local总线冲突问题的研究
PCI总线
Local总线
总线冲突
FIFO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A FLUID-PARTICLE MODEL WITH ELECTRIC FIELDS NEAR A LOCAL MAXWELLIAN WITH RAREFACTION WAVE
来源期刊 应用数学年刊:英文版 学科 数学
关键词 fluid-particle model RAREFACTION WAVE time-asymptotic stability
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 317-356
页数 40页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
fluid-particle
model
RAREFACTION
WAVE
time-asymptotic
stability
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学年刊:英文版
季刊
2096-0174
35-1328/O1
福州大学数学与计算机科学学院应用数学年刊
出版文献量(篇)
1640
总下载数(次)
1
总被引数(次)
0
论文1v1指导