基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BACKGROUND Mesenchymal stem cells (MSCs) have been widely tested for their therapeutic efficacy in the ischemic brain and have been shown to provide several benefits. A major obstacle to the clinical translation of these therapies has been the inability to noninvasively monitor the best route, cell doses, and collateral effects while ensuring the survival and effective biological functioning of the transplanted stem cells. Technological advances in multimodal imaging have allowed in vivo monitoring of the biodistribution and viability of transplanted stem cells due to a combination of imaging technologies associated with multimodal nanoparticles (MNPs) using new labels and covers to achieve low toxicity and longtime residence in cells. AIM To evaluate the sensitivity of triple-modal imaging of stem cells labeled with MNPs and applied in a stroke model. METHODS After the isolation and immunophenotypic characterization of human bone marrow MSCs (hBM-MSCs), our team carried out lentiviral transduction of these cells for the evaluation of bioluminescent images (BLIs) in vitro and in vivo. In addition, MNPs that were previously characterized (regarding hydrodynamic size, zeta potential, and optical properties), and were used to label these cells, analyze cell viability via the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and BLI analysis, and quantify the internalization process and iron load in different concentrations of MNPs via magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF), and inductively coupled plasma-mass spectrometry (ICP-MS). In in vivo analyses, the same labeled cells were implanted in a sham group and a stroke group at different times and under different MNP concentrations (after 4 h or 6 d of cell implantation) to evaluate the sensitivity of triple-modal images. RESULTS hBM-MSC collection and isolation after immunophenotypic characterization were demonstrated to be adequate in hBM samples. After transduction of these cells with luciferase (hBM-MSCLuc), we detec
推荐文章
The effect of pH on the sorption of gold nanoparticles on illite
Gold nanoparticles
Illite
Sorption
Charge
Electrostatic interaction
概率Applied Pi框架下的匿名度分析
概率进程演算
匿名度
互模拟
匿名协议
密码学家就餐问题
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Triple-modal imaging of stem-cells labeled with multimodal nanoparticles, applied in a stroke model
来源期刊 世界干细胞杂志:英文版(电子版) 学科 医学
关键词 MULTIMODAL NANOPARTICLES Human bone MARROW mesenchymal stem cells Near-infrared fluorescence image Magnetic resonance BIOLUMINESCENCE STROKE
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 100-123
页数 24页 分类号 R
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MULTIMODAL
NANOPARTICLES
Human
bone
MARROW
mesenchymal
stem
cells
Near-infrared
fluorescence
image
Magnetic
resonance
BIOLUMINESCENCE
STROKE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
世界干细胞杂志:英文版(电子版)
月刊
1948-0210
北京市朝阳区东四环中路62号楼远洋国际中
出版文献量(篇)
526
总下载数(次)
0
论文1v1指导