基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Oysters are nutritious food organisms,rich in protein,minerals and vitamins.Production from Pacific oyster(Crassostrea gigas)aquaculture is increasing and supports the livelihoods of coastal communities.To ensure both success and long-term sustainability of oyster production,the determination of suitable sites is an important step in any aquaculture operation.This study applied GIS(Geographic Information System)based MCE(Multi-Criteria Evaluation)for locating suitable sites for Pacific oyster(Crassostrea gigas)farms in coastal regions in Central Vietnam.Remote sensing data were obtained viaMODIS(Moderate Resolution Imaging Spectroradiometer)and high resolution imagery from the Google Earth Engine,while oceanic data were obtained from HYCOM-NCODA(Hybrid Coordinate Ocean Model-Navy Coupled Ocean Data Assimilation)coupled with local hydrodynamic FEM(Finite Element Model)Hydrographic charts and GPS(Global Positioning System)data were used to extract required information layers for GIS based MCE for the suitable site selection of oyster farms.Six thematic layers of biophysical parameters were used to analysis MCE non-constraints including the depth,temperature,salinity,Chl-a(Chlorophyll-a)content,suspended matter concentration and velocity of sea current.Then,an MCE analysis with constraint was used to exclude the areas from suitability maps where oyster aquaculture could not be developed.They were conducted in two subgroups,biophysical subgroup(including un-suitable depth,un-suitable substratum and shore line types,potential regions prone to strong impact of natural disasters and environmental risks,sensitive habitats in MPAs(Marine Protection Areas),and social-infrastructural subgroups(including human settlement in urban area,wastewater system,industrial zones,piers,harbors etc.).A series of GIS models was developed to identify the most suitable areas for oyster culture using MCE with the estimating of factor score(Xi)based on expert knowledge as well as calculating of Weighting(Wi)based on Saaty’s matrix relevant
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
Geochemistry and sediment in the main stream of the Ca River basin, Vietnam: weathering process, sol
Ca River
Dissolved solids
Geochemistry
Carbonate weathering
Suspended solids
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 GIS-Based Multi-Criteria Evaluation Models for Selection of Suitable Sites for Pacific Oyster(Crassostrea gigas)Aquaculture in the Central Region of Vietnam
来源期刊 环境科学与工程:A 学科 地球科学
关键词 GIS remote sensing MCE suitable site SELECTION Pacific oyster.
年,卷(期) hjkxygc-a_2019,(4) 所属期刊栏目
研究方向 页码范围 141-158
页数 18页 分类号 X
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GIS
remote
sensing
MCE
suitable
site
SELECTION
Pacific
oyster.
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
环境科学与工程:A
月刊
2162-5301
武汉洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
331
总下载数(次)
0
论文1v1指导