基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In 1986, G.X. Viennot introduced the theory of heaps of pieces as a visualization of Cartier and Foata’s “partially commutative monoids”. These are essentially labeled posets satisfying a few additional properties, and one natural setting where they arise is as models of reduced words in Coxeter groups. In this paper, we introduce a cyclic version of a heap, which loosely speaking, can be thought of as taking a heap and wrapping it into a cylinder. We call this object a toric heap, because we formalize it as a labeled toric poset, which is a cyclic version of an ordinary poset. Defining the category of toric heaps leads to the notion of certain morphisms such as toric extensions. We study toric heaps in Coxeter theory, because a cyclic shift of a reduced word is simply a conjugate by an initial or terminal generator. As such, we formalize and study a framework that we call cyclic reducibility in Coxeter theory, which is closely related to conjugacy. We introduce what it means for elements to be torically reduced, which is a stronger condition than simply being cyclically reduced. Along the way, we encounter a new class of elements that we call torically fully commutative (TFC), which are those that have a unique cyclic commutativity class, and comprise a strictly bigger class than the cyclically fully commutative (CFC) elements. We prove several cyclic analogues of results on fully commutative (FC) elements due to Stembridge. We conclude with how this framework fits into recent work in Coxeter groups, and we correct a minor flaw in a few recently published theorems.
推荐文章
Weyl群与Coxeter群的关系
Cartan矩阵
Weyl群
Coxeter群
Toric人工晶状体植入术一年后旋转稳定性及影响因素
白内障
角膜散光
Toric人工晶状体
旋转稳定性
影响因素
有限维结合代数的Coxeter矩阵
Cartan矩阵
Coxeter矩阵
基本反射
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Toric Heaps, Cyclic Reducibility, and Conjugacy in Coxeter Groups
来源期刊 离散数学期刊(英文) 学科 数学
关键词 CONJUGACY Coxeter Group CFC Cyclic REDUCIBILITY Faux CFC Cyclically Fully COMMUTATIVE HEAP Logarithmic Morphism TFC Torically Fully COMMUTATIVE TORIC HEAP TORIC Poset TORIC REDUCIBILITY Trace Monoid
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 110-143
页数 34页 分类号 O15
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CONJUGACY
Coxeter
Group
CFC
Cyclic
REDUCIBILITY
Faux
CFC
Cyclically
Fully
COMMUTATIVE
HEAP
Logarithmic
Morphism
TFC
Torically
Fully
COMMUTATIVE
TORIC
HEAP
TORIC
Poset
TORIC
REDUCIBILITY
Trace
Monoid
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
离散数学期刊(英文)
季刊
2161-7635
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
160
总下载数(次)
0
总被引数(次)
0
论文1v1指导