基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文对于K均值聚类算法应用在大量微博数据集中聚类效率低,正确性不高的问题,提出了一种改进的K均值微博热点话题发现方法.在对微博特有属性的研究基础上,利用微博转发关系解决微博内容碎片化导致的聚类准确性及效率较低的问题;实验结果表明本文提出的改进的K均值聚类算法比传统的K均值热点话题发现,准确率提升了11.3%,聚类比较次数提升了27.5%.
推荐文章
基于速度增长的微博热点话题发现
增长斜率
增长速度
时间二元组序列
热点发现
微博负向情感热点话题发现模型
微博
负向情感
热点分析
事件发现
一种热点话题算法在微博舆情系统中的应用
微博
情感分析
热点话题
微博舆情
基于混合聚类的微博热点话题发现方法
聚类算法
向量空间模型
话题聚类
热点话题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的K均值微博热点话题发现方法
来源期刊 数据通信 学科
关键词 微博转发关系 K均值 微博话题 热点发现 Word2vec
年,卷(期) 2019,(1) 所属期刊栏目 技术交流
研究方向 页码范围 31-35
页数 5页 分类号
字数 4035字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马苗苗 四川大学计算机学院 3 8 1.0 2.0
2 何诺 四川大学计算机学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (155)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(13)
  • 参考文献(1)
  • 二级参考文献(12)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(10)
  • 参考文献(3)
  • 二级参考文献(7)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微博转发关系
K均值
微博话题
热点发现
Word2vec
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据通信
双月刊
1002-5057
11-2841/TP
大16开
北京市海淀区学院路40号
82-891
1980
chi
出版文献量(篇)
2014
总下载数(次)
6
总被引数(次)
7821
论文1v1指导