作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为及时从海量微博信息中迅捷有效提取出微博热点话题、事件,提出基于频繁集的聚类SSDKmeans算法,在有限空间下统计分词的近似频数,并在此基础上构建文本向量空间模型,在聚类生成的每个话题簇中提炼话题关键词.通过对2万条微博数据进行有效性验证,结果表明,基于SSDKmeans算法的话题发现有较高的召回率和精准率,分别为91.3%、92.1%.SSDKmeans算法能够有效提高微博热点话题发现率,进而及时了解社会热点话题与舆论趋势.
推荐文章
基于速度增长的微博热点话题发现
增长斜率
增长速度
时间二元组序列
热点发现
微博负向情感热点话题发现模型
微博
负向情感
热点分析
事件发现
基于数据挖掘技术的微博热点话题预测
数据挖掘
网络技术
微博话题
预测模型
基于混合聚类的微博热点话题发现方法
聚类算法
向量空间模型
话题聚类
热点话题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SSDKmeans算法的微博热点话题发现研究
来源期刊 软件导刊 学科 工学
关键词 话题发现 文本聚类 微博短文本 频繁集
年,卷(期) 2019,(9) 所属期刊栏目 数据库与信息处理
研究方向 页码范围 173-175,182
页数 4页 分类号 TP391
字数 3203字 语种 中文
DOI 10.11907/rjdk.192006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李海明 山东科技大学计算机科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (190)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(7)
  • 参考文献(4)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(10)
  • 参考文献(1)
  • 二级参考文献(9)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
话题发现
文本聚类
微博短文本
频繁集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导