基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
AIM: To investigate and compare the efficacy of two machine-learning technologies with deep-learning(DL) and support vector machine(SVM) for the detection of branch retinal vein occlusion(BRVO) using ultrawide-field fundus images. METHODS: This study included 237 images from 236 patients with BRVO with a mean±standard deviation of age 66.3±10.6 y and 229 images from 176 non-BRVO healthy subjects with a mean age of 64.9±9.4 y. Training was conducted using a deep convolutional neural network using ultrawide-field fundus images to construct the DL model. The sensitivity, specificity, positive predictive value(PPV), negative predictive value(NPV) and area under the curve(AUC) were calculated to compare the diagnostic abilities of the DL and SVM models. RESULTS: For the DL model, the sensitivity, specificity, PPV, NPV and AUC for diagnosing BRVO was 94.0%(95%CI: 93.8%-98.8%), 97.0%(95%CI: 89.7%-96.4%), 96.5%(95%CI: 94.3%-98.7%), 93.2%(95%CI: 90.5%-96.0%) and 0.976(95%CI: 0.960-0.993), respectively. In contrast, for the SVM model, these values were 80.5%(95%CI: 77.8%-87.9%), 84.3%(95%CI: 75.8%-86.1%), 83.5%(95%CI: 78.4%-88.6%), 75.2%(95%CI: 72.1%-78.3%) and 0.857(95%CI: 0.811-0.903), respectively. The DL model outperformed the SVM model in all the aforementioned parameters(P<0.001). CONCLUSION: These results indicate that the combination of the DL model and ultrawide-field fundus ophthalmoscopy may distinguish between healthy and BRVO eyes with a high level of accuracy. The proposed combination may be used for automatically diagnosing BRVO in patients residing in remote areas lacking access to an ophthalmic medical center.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion
来源期刊 国际眼科杂志:英文版 学科 医学
关键词 automatic diagnosis branch retinal vein OCCLUSION deep learning MACHINE-LEARNING technology ultrawide-field FUNDUS OPHTHALMOSCOPY
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 94-99
页数 6页 分类号 R
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
automatic
diagnosis
branch
retinal
vein
OCCLUSION
deep
learning
MACHINE-LEARNING
technology
ultrawide-field
FUNDUS
OPHTHALMOSCOPY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际眼科杂志:英文版
月刊
2222-3959
西安市友谊东路269号
出版文献量(篇)
2720
总下载数(次)
2
总被引数(次)
0
论文1v1指导