基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对舰船任务系统的复杂环境,综合考虑舰船软件自身性能、外在环境和运行工况等数据的影响,采用长短期记忆网络模型(LSTM)预测软件运行健康状态,并针对样本类别分布不均衡导致的预测效果不佳等问题,提出了一种加权焦点损失函数(WFL).实验结果表明:基于WFL与包含三个隐含层的LSTM模型(LSTM3-WFL)不仅比传统的机器学习算法能够更好地学习到特征在时间维度上的变化规律;而且相较于基于交叉熵损失函数的LSTM模型,该模型更容易学习到样本个数较少的类别信息,并最终在测试集上达到98.2%的准确率与0.947的宏平均F1-Socre值,在舰船软件运行健康状态的预测问题上有很高的应用价值.
推荐文章
基于LSTM模型的短期负荷预测
短期负荷预测
LSTM神经网络
工业用户
深度学习
基于VMD和DBN的结构健康状态趋势预测
变分模态分解
深度置信网络
结构健康预测
动量学习率
基于LSTM变权组合模型的股价预测
GRA
PCA
LSTM
误差倒数变权组合预测法
基于虚拟样本和LSTM模型的输油管道运行电耗预测研究
虚拟样本
LSTM
输油管道
运行电耗
压力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM的舰船软件运行健康状态预测
来源期刊 华中科技大学学报(自然科学版) 学科 工学
关键词 舰船任务系统 LSTM模型 状态预测 分布不均衡 WFL损失函数
年,卷(期) 2019,(9) 所属期刊栏目 机械与船舶工程
研究方向 页码范围 25-30
页数 6页 分类号 TP319
字数 语种 中文
DOI 10.13245/j.hust.190905
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡洋 2 2 1.0 1.0
2 冯浩 1 2 1.0 1.0
3 易全政 华中科技大学计算机学院 1 2 1.0 1.0
4 聂听 华中科技大学计算机学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (17)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
舰船任务系统
LSTM模型
状态预测
分布不均衡
WFL损失函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导