原文服务方: 计算技术与自动化       
摘要:
风电占比的不断增加对电力系统安全稳定运行带来挑战,快速、准确的风电功率预测方法至关重要。提出了一种ES-GRU-LSTM模型对风电场群功率进行预测,通过指数平滑法(ES)处理原始数据填补缺失与异常值,提高了功率数据集的可信度和平滑性,并引入训练速度快、结构较简单的门控循环单元(GRU)对预测性能好、准确性较高的长短期记忆(LSTM)神经网络进行改进,比较ES-GRU-LSTM、GRU、LSTM的预测性能和预测时间。仿真结果表明,ES-GRU-LSTM同时改善了预测精度和预测速度。
推荐文章
卡尔曼滤波修正的风电场短期功率预测模型
卡尔曼滤波
神经网络
功率预测
风力发电
基于深度学习网络的风电场功率短期预测研究
风电场
数值天气预报
功率预测
深度学习网
右玉高家堡风电场功率预测系统开发与应用
风电场
功率预测
时间序列
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ES-GRU-LSTM的风电场群功率预测
来源期刊 计算技术与自动化 学科
关键词 长短记忆神经网络 门控循环单元 风电场群 功率预测 指数平滑法
年,卷(期) 2022,(3) 所属期刊栏目 控制系统与自动化装置
研究方向 页码范围 37-41
页数 4页 分类号 TM614
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202203007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
长短记忆神经网络
门控循环单元
风电场群
功率预测
指数平滑法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导