基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对入口匝道流量控制提升通行效率问题,提出了一种基于图像卷积神经网络的匝道控制深度强化学习算法.克服传统依赖定点检测器的匝道控制对于交通状态估计模糊的缺陷,建立基于图像卷积神经网络的连续时空交通状态解析,采用具有优先经验回放的深度Q学习算法,构建以视频图像作为输入、最优匝道流量策略为输出的算法框架.基于交通仿真(SUMO)平台,模拟了典型的高速公路合流瓶颈路段并进行控制效果测试.结果表明,深度强化学习匝道控制策略能够主动响应不同的交通状态,在短训练时间内达到目标找到最优控制策略,通过采取合适控制动作消除和预防合流区拥堵.本文提出的控制策略有效减少系统总旅行时间13.05%,优于传统定时调节式匝道控制和反馈式匝道控制算法,能更加有效提升高速公路合流区通行效率.
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
深度学习
卷积神经网络(CNN)
自适应
图像识别
层次化迭代
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图像卷积神经网络的匝道控制深度强化学习算法研究
来源期刊 交通工程 学科 交通运输
关键词 匝道控制 人工智能 深度强化学习 图像 效果评价
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 1-6
页数 6页 分类号 U491.4
字数 语种 中文
DOI 10.13986/j.cnki.jote.2019.04.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李志斌 东南大学交通学院 18 146 9.0 12.0
2 戴昇宏 东南大学交通学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (33)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
匝道控制
人工智能
深度强化学习
图像
效果评价
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通工程
双月刊
2096-3432
10-1468/U
大16开
北京市丰台区南四环西路186号汉威国际四区3号楼6M层
2000
eng
出版文献量(篇)
1342
总下载数(次)
5
总被引数(次)
5375
论文1v1指导