基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
JavaScript是一种动态脚本语言,被用于提高网页的交互能力.然而攻击者利用它的动态性在网页中执行恶意代码,构成了巨大威胁.传统的基于静态特征的检测方式难以检测经过混淆后的恶意代码,而基于动态分析检测的方式存在效率低等问题.本文提出了一种基于语义分析的静态检测模型,通过提取抽象语法树的词法单元序列特征,使用word2vec训练词向量模型,将生成的序列向量特征输入到LSTM网络中检测恶意JavaScript脚本.实验结果表明,该模型能够高效检测混淆的恶意JavaScript代码,模型的精确率达99.94%,召回率为98.33%.
推荐文章
基于对象语义的恶意代码检测方法
恶意代码检测
系统对象
抗混淆
语义
状态变迁图
基于敏感点覆盖的恶意代码检测方法
恶意代码检测
敏感行为函数
系统函数调用图
敏感路径
符号执行
基于模糊识别恶意代码检测技术的研究
模糊识别
恶意代码
支持向量机
基于函数调用图的Android恶意代码检测方法研究
机器学习
Android程序
函数调用图
图谱理论
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于语义分析的恶意JavaScript代码检测方法
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 恶意JavaScript代码检测 抽象语法树 长短时记忆网络 深度学习
年,卷(期) 2019,(2) 所属期刊栏目 电子信息科学
研究方向 页码范围 273-278
页数 6页 分类号 TP391.1
字数 3044字 语种 中文
DOI 10.3969/j.issn.0490-6756.2019.02.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 方勇 四川大学网络空间安全学院 173 1188 18.0 25.0
2 黄诚 四川大学网络空间安全学院 21 76 5.0 7.0
3 刘亮 四川大学网络空间安全学院 70 239 9.0 11.0
4 张星 2 6 2.0 2.0
5 邱瑶瑶 四川大学电子信息学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (32)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (21)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(7)
  • 参考文献(3)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
恶意JavaScript代码检测
抽象语法树
长短时记忆网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导