作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高大数据集离群点挖掘能力,提出基于梯度提升回归树的大数据集离群点挖掘模型,构建大数据集离群点的回归树分布模型,采用多维特征融合方法进行大数据集离群点的特征检测,提取大数据集离群点的空间区域分布特征量,采用梯度提升回归分析方法对提取的大数据集离群点特征进行模糊聚类处理,在聚类中心中实现对大数据集离群点数据的自适应融合和分布式检测,通过梯度提升回归树分析方法实现大数据集离群点挖掘.仿真结果表明,采用该方法进行大数据集离群点挖掘的准确性较高,抗干扰性较好,提高了大数据集离群点挖掘过程的收敛和控制能力.
推荐文章
基于梯度提升回归树的处理器性能数据挖掘研究
性能计数器
梯度提升回归树
云计算
离群点挖掘研究
离群点
数据挖掘
局部离群点
高维数据
数据流
基于全息熵的空间离群点挖掘算法研究
全息熵
R*-树
空间离群点
离群点检测
混合属性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于梯度提升回归树的大数据集离群点挖掘模型构建①
来源期刊 佳木斯大学学报(自然科学版) 学科 工学
关键词 梯度提升回归树 大数据 集离群点 挖掘
年,卷(期) 2019,(5) 所属期刊栏目 电气工程与信息技术
研究方向 页码范围 743-747
页数 5页 分类号 TP391
字数 3328字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡小琴 6 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (61)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(17)
  • 参考文献(3)
  • 二级参考文献(14)
2017(9)
  • 参考文献(0)
  • 二级参考文献(9)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
梯度提升回归树
大数据
集离群点
挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
佳木斯大学学报(自然科学版)
双月刊
1008-1402
23-1434/T
大16开
黑龙江省佳木斯市学府街148号
14-176
1983
chi
出版文献量(篇)
5218
总下载数(次)
9
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导