基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
光伏发电系统的输出功率具有波动性和间歇性,其特性影响了电力系统安全、稳定与经济地运行,因此准确预测光伏发电系统的输出功率具有十分重要的意义.目前,光伏出力预测一般使用比较简单的网络,如BP神经网络和SVM等,并且大多数预测的时间级为小时级,而对于分钟级的预测具有一定的难度.光伏出力预测是一个回归问题,而长短时记忆(LSTM)在时间序列上具有良好的处理效果.本文研究影响光伏发电的因素,并从中选取主要因素作为特征,通过构建基于LSTM的深度学习模型来预测光伏发电功率.在不同天气情况下,光伏发电功率的波形具有不同的特征,因此对不同天气类型构建不同的LSTM预测模型.实测数据表明,不同天气类型的LSTM模型具有更忧的性能.
推荐文章
光伏发电系统发电功率预测
光伏
功率预测
粒子群算法
核函数极限学习机
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于并行多通道卷积长短时记忆网络的轴承寿命预测方法
多通道
并行多通道卷积神经网络
长短时记忆网络
轴承
剩余使用寿命预测
基于长短时记忆神经网络的带钢酸洗浓度预测
浓度预测
带钢酸洗
深度学习
长短期记忆
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于长短时记忆网络的光伏发电功率预测
来源期刊 科研信息化技术与应用 学科
关键词 LSTM 光伏发电功率 预测模型 相关性系数
年,卷(期) 2019,(2) 所属期刊栏目 应用
研究方向 页码范围 31-41
页数 11页 分类号
字数 4121字 语种 中文
DOI 10.11871/j.issn.1674-9480.2019.02.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (107)
共引文献  (281)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(12)
  • 参考文献(1)
  • 二级参考文献(11)
2011(12)
  • 参考文献(0)
  • 二级参考文献(12)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(14)
  • 参考文献(3)
  • 二级参考文献(11)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(6)
  • 参考文献(6)
  • 二级参考文献(0)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LSTM
光伏发电功率
预测模型
相关性系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科研信息化技术与应用
双月刊
1674-9480
11-5943/TP
北京市海淀区中关村南四街4号
chi
出版文献量(篇)
501
总下载数(次)
5
总被引数(次)
1249
论文1v1指导