基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Deep learning has been transformative in many fields,motivating the emergence of various optical computing architectures.Diffractive optical network is a recently introduced optical computing framework that merges wave optics with deep-learning methods to design optical neural networks.Diffraction-based all-optical object recognition systems,designed through this framework and fabricated by 3D printing,have been reported to recognize handwritten digits and fashion products,demonstrating all-optical inference and generalization to sub-classes of data.These previous diffractive approaches employed monochromatic coherent light as the illumination source.Here,we report a broadband diffractive optical neural network design that simultaneously processes a continuum of wavelengths generated by a temporally incoherent broadband source to all-optically perform a specific task learned using deep learning.We experimentally validated the success of this broadband diffractive neural network architecture by designing,fabricating and testing seven different multi-layer,diffractive optical systems that transform the optical wavefront generated by a broadband THz pulse to realize (1) a series of tuneable,single-passband and dual-passband spectral filters and (2) spatially controlled wavelength de-multiplexing.Merging the native or engineered dispersion of various material systems with a deep-learning-based design strategy,broadband diffractive neural networks help us engineer the light-matter interaction in 3D,diverging from intuitive and analytical design methods to create taskspecific optical components that can all-optically perform deterministic tasks or statistical inference for optical machine learning.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Design of task-specific optical systems using broadband diffractive neural networks
来源期刊 光:科学与应用(英文版) 学科
关键词
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 1084-1097
页数 14页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (32)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(3)
  • 参考文献(3)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(6)
  • 参考文献(6)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(8)
  • 参考文献(8)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
光:科学与应用(英文版)
双月刊
2095-5545
22-1404/O4
吉林省长春市东南湖大路3888号
eng
出版文献量(篇)
762
总下载数(次)
0
论文1v1指导