基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Classical radial basis function network(RBFN)is widely used to process the non-linear separable data sets with the introduction of activation functions.However,the setting of parameters for activation functions is random and the distribution of patterns is not taken into account.To process this issue,some scholars introduce the kernel clustering into the RBFN so that the clustering results are related to the parameters about activation functions.On the base of the original kernel clustering,this study further discusses the influence of kernel clustering on an RBFN when the setting of kernel clustering is changing.The changing involves different kernel-clustering ways[bubble sort(BS)and escape nearest outlier(ENO)],multiple kernel-clustering criteria(static and dynamic)etc.Experimental results validate that with the consideration of distribution of patterns and the changes of setting of kernel clustering,the performance of an RBFN is improved and is more feasible for corresponding data sets.Moreover,though BS always costs more time than ENO,it still brings more feasible clustering results.Furthermore,dynamic criterion always cost much more time than static one,but kernel number derived from dynamic criterion is fewer than the one from static.
推荐文章
The influence of climate and topography on chemical weathering of granitic regoliths in the monsoon
Granitic regolith
Chemical weathering
Supply-limited weathering
Kinetic-limited weathering
μClinux-kernel-2.6芯片级移植分析与实现
μClinux
kernel-2.6
芯片级
移植
LPC2294
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Influence of kernel clustering on an RBFN
来源期刊 智能技术学报 学科 工学
关键词 KERNEL RBFN ACTIVATION
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 255-260
页数 6页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
KERNEL
RBFN
ACTIVATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
论文1v1指导