基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Height prediction of water flowing fractured zones basedon BP artificial neural network
来源期刊 地下水科学与工程:英文版 学科 地球科学
关键词 HEIGHT of water flowing fractured ZONE BP artificial NEUTRAL network COMPARATIVE analysis
年,卷(期) dxskxygcywb_2019,(4) 所属期刊栏目
研究方向 页码范围 354-359
页数 6页 分类号 P64
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
HEIGHT
of
water
flowing
fractured
ZONE
BP
artificial
NEUTRAL
network
COMPARATIVE
analysis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地下水科学与工程:英文版
季刊
2305-7068
河北省石家庄市中华北大街268号
出版文献量(篇)
277
总下载数(次)
0
论文1v1指导