基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The gated recurrent unit (GRU) deep model is interpreted to predict price’s falling or rising. By using a technique called Tree Regularization of Deep Models for Interpretability, a GRU network is converted to a decision tree (called GRU-Tree) to interpret its prediction rules. This approach was tested by experimenting on a few sample stocks (e.g., the Gree company) and a main stock market index (SSE Composite Index) in China. The discovered prediction rules actually reflect a general rule called Mean Reversion in stock market. Results show that the GRU-Tree is more effective (higher AUC) than the decision tree directly trained from the data for small and moderate average path length (APL) of trees. And the fidelity between GRU and its generated GRU-Tree is high (about 0.8).
推荐文章
A preliminary study on ore-forming environments of Xianglushan-type iron deposit and the weathering
Emeishan basalt paleo-weathering crust
Xianglushan-type iron deposit
Ore-forming environment
Weathering mineralization
Western Guizhou Province
Low net primary productivity of dominant tree species in a karst forest, southwestern China: first e
Biomass increment
Tree ring
Girth measurement
Karst evergreen and deciduous broadleaved forest
Allometric functions
基于ES-GRU-LSTM的风电场群功率预测
长短记忆神经网络
门控循环单元
风电场群
功率预测
指数平滑法
基于改进GRU的电力大数据分析
异常值
自适应阈值的小波滤波
数据段
标准记忆
改进GRU
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Preliminary Study on Interpreting Stock Price Forecasting Based on Tree Regularization of GRU
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 TREE REGULARIZATION Stock forecasting INTERPRETABILITY GATED RECURRENT unit GRU-Tree Deep learning
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 484-487
页数 4页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TREE
REGULARIZATION
Stock
forecasting
INTERPRETABILITY
GATED
RECURRENT
unit
GRU-Tree
Deep
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导