基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高基于巴克豪森噪声信号的铁磁材料硬度预测方法的精度并使其自动化,提出一组基于巴氏噪声自回归(auto regression,AR)谱一阶导数、二阶导数的预测特征;设计一种特征抽取算法,以统一频域特征的维度;通过改进随机森林算法的群投票机制减少噪声干扰与运算复杂度. 通过2种金属的硬度预测实验,获得预期的结果,采用本文特征与算法的预测方法均方误差仅分别为60. 3、81. 3,与经典时域预测方法的均方误差229. 8、298. 7相比,所提出的特征与算法的预测方法具有明显的精确度和优越性.
推荐文章
基于改进随机森林算法的股票趋势预测
股票趋势预测
技术指标
特征选择
改进的随机森林算法
基于改进的随机森林算法股票收益率预测研究
粒子群
随机森林
股票收益率
特征选择
基于改进随机森林算法的电动汽车充电预测
电动汽车
随机森林
充电负荷
数据分析
负荷预测
一种基于随机森林的改进特征筛选算法
随机森林算法
特征筛选
肝癌预后预测
决策树
预测精度
特征集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进随机森林算法的铁磁材料硬度预测
来源期刊 北京工业大学学报 学科 工学
关键词 巴克豪森噪声 频域自回归(AR)谱 二阶导数 CART算法 特征抽取算法 随机森林
年,卷(期) 2019,(2) 所属期刊栏目 研究论文
研究方向 页码范围 119-125
页数 7页 分类号 TP 391
字数 6654字 语种 中文
DOI 10. 11936/bjutxb2018020017
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
巴克豪森噪声
频域自回归(AR)谱
二阶导数
CART算法
特征抽取算法
随机森林
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京工业大学学报
月刊
0254-0037
11-2286/T
大16开
北京市朝阳区平乐园100号
2-86
1974
chi
出版文献量(篇)
4796
总下载数(次)
21
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导