基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统协同过滤算法过分依赖用户历史评分数据及评分数据存在严重稀疏性问题的情况,提出一种基于关联规则的协同过滤改进算法.该算法设置相似度阈值,计算近邻用户与目标用户之间的相似度,选取相似度最高的近邻用户组成邻居集,若邻居集中的所有近邻用户与目标用户的相似度都高于阈值则按照传统协同过滤进行评分预测,否则引入关联规则的算法对目标用户进行评分预测.首先,对利用Apriori算法输出的关联规则进行拆分,得到一对一、多对一两种形式的规则;其次,基于支持度和置信度构建推荐度计算方法;再次,形成引入关联规则的算法;最后,根据阈值选择相应的算法进行评分预测,将评分高的项目推荐给用户.实验结果表明:所提出的算法与传统协同过滤算法、基于用户平均值填充的协同过滤算法相比,在MAE、RMSE上都有明显下降,可以在一定程度上提高推荐质量.
推荐文章
结合关联规则填充的协同过滤改进算法
关联规则
数据填充
协同过滤
推荐算法
评分矩阵
数据稀疏
对比实验
基于Spark的混合协同过滤算法改进与实现
集成学习
协同过滤
稀疏性
扩展性
Spark流式计算
增量模型
分类
基于项目分类的协同过滤改进算法
项目分类
协同过滤
评分预测
兴趣最近邻
推荐系统
协同过滤算法的研究
推荐系统
协同过滤
基于用户的算法
基于物品的算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于关联规则的协同过滤改进算法
来源期刊 重庆理工大学学报(自然科学版) 学科 工学
关键词 推荐系统 协同过滤 关联规则 相似度 推荐算法
年,卷(期) 2019,(3) 所属期刊栏目 信息·计算机
研究方向 页码范围 161-168
页数 8页 分类号 TP18
字数 6419字 语种 中文
DOI 10.3969/j.issn.1674-8425(z).2019.03.024
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张小川 重庆理工大学计算机科学与工程学院 44 178 8.0 9.0
2 向南 重庆理工大学两江国际学院 12 21 2.0 3.0
3 桑瑞婷 重庆理工大学计算机科学与工程学院 3 22 3.0 3.0
4 周泽红 重庆理工大学计算机科学与工程学院 2 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (73)
共引文献  (568)
参考文献  (17)
节点文献
引证文献  (4)
同被引文献  (9)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(7)
  • 参考文献(5)
  • 二级参考文献(2)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
协同过滤
关联规则
相似度
推荐算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导