基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.
推荐文章
基于鱼群算法优化normalized cut的彩色图像分割方法
模糊C-均值聚类
归一化划分
鱼群优化算法
彩色图像分割
用于网格计算的Overlay Network 设计算法的研究
网格架构
Overlay Network
拓扑结构
拉格朗日松驰
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Detecting Iris Liveness with Batch Normalized Convolutional Neural Network
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 IRIS LIVENESS detection BATCH NORMALIZATION convolutional neural network BIOMETRIC FEATURE recognition
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 493-504
页数 12页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
IRIS
LIVENESS
detection
BATCH
NORMALIZATION
convolutional
neural
network
BIOMETRIC
FEATURE
recognition
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导