基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了缩小目前行人再识别算法与真实世界中行人检索任务之间在应用上的差距,将行人检测与再识别这2个模块融为一体,提出一种基于改进的Faster R-CNN的行人检索算法.首先采用对边框进行迭代回归的方法改进原Faster R-CNN中的候选行人边框精度;然后利用包含欧氏距离和余弦距离的混合相似性距离函数来增强网络对于行人相似度的辨识能力;最后利用中心损失函数对网络的损失函数进行改进,通过提高不同行人特征的可区分度,实现更加精准的目标行人检索功能.基于CUHK-SYSU数据集的仿真实验结果表明,该算法的累积匹配特性(CMC top-1)、平均精度均值(mAP)分别为81.6%和78.9%;与相关行人检索算法相比,CMC top-1提升3.0%~18.0%,mAP提升3.0%~23.0%.
推荐文章
基于DRN和Faster R-CNN融合模型的行为识别算法
行为识别
扩张残差网络
Faster R-CNN
基于Faster R-CNN的蓝莓冠层果实检测识别分析
蓝莓
冠层果实
FasterR-CNN
精准识别
产量预估
不同成熟度
应用GAN和Faster R-CNN的色织物缺陷识别
色织物
图像扩充
生成对抗网络
FasterR-CNN
缺陷识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Faster R-CNN行人检测与再识别为一体的行人检索算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 FasterR-CNN 距离函数 损失函数 行人检测 行人再识别
年,卷(期) 2019,(2) 所属期刊栏目 图像与视觉
研究方向 页码范围 332-339
页数 8页 分类号 TP391.41
字数 7981字 语种 中文
DOI 10.3724/SP.J.1089.2019.17075
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐向宏 杭州电子科技大学通信工程学院 102 580 12.0 19.0
2 傅博文 杭州电子科技大学通信工程学院 2 13 1.0 2.0
3 陈恩加 杭州电子科技大学通信工程学院 1 12 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (12)
同被引文献  (24)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(5)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(5)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(7)
  • 引证文献(7)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FasterR-CNN
距离函数
损失函数
行人检测
行人再识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导