作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Feature extraction and fusion is important in big data, but the dimension is too big to learn a good representation. To learn a better feature extraction, a method that combines the KL divergence with feature extraction is proposed. Firstly the initial feature was extracted from the primitive data by matrix decomposition. Then the feature was further optimized by using KL divergence, where KL divergence was introduced to the loss function to make the goal function with the shortest KL distance. The experiment is implemented in four datasets such as COIL-20, COIL-100, CBCI 3000 and USPclassifyAL. The result shows that the proposed method outperforms the other four methods in the accuracy when using least number of features.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
The contribution of bacteria to organic matter in coal-measure source rocks
Coal-measure source rocks
Organic matter type
Bacteria
Monomethyl alkanes
Alkyl cyclohexane
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Method for Extraction and Fusion Based on KL Measure
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 FEATURE EXTRACTION KL DIVERGENCE SAMPLES LOSS function
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 50-51
页数 2页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FEATURE
EXTRACTION
KL
DIVERGENCE
SAMPLES
LOSS
function
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导